MAIN EFFECTS

TWO FACTOR ANOVA

MAIN EFFECTS AND INTERACTIONS

As noted in the previous section, a two-factor ANOVA actually involves three distinct
hypothesis tests. In this section, we examine these three tests in more detail.

Traditionally, the two independent variables in a two-factor experiment are
identified as factor A and factor B. For the study presented in Table 14.1, self-esteem
is factor A. and the presence or absence of an audience is factor B. The goal of the
study is to evaluate the mean differences that may be produced by either of these
factors acting independently or by the two factors acting together.

One purpose of the study is to determine whether differences in self-esteem (factor A)
result in differences in performance. To answer this question, we compare the mean
score for all of the participants with low self-esteem with the mean for those with high
self-esteem. Note that this process evaluates the mean difference between the top row
and the bottom row in Table 14.1.

To make this process more concrete, we present a set of hypothetical data in
Table 14.2. The table shows the mean score for each of the treatment conditions
(cells) as well as the overall mean for each column (each audience condition) and the
overall mean for each row (each self-esteem group). These data indicate that the low
self-esteem participants (the top row) had an overall mean of M = 8 errors. This over-
all mean was obtained by computing the average of the two means in the top row. In
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TION

contrast, the high self-esteem participants had an overall mean of M = 4 errors (the
mean for the bottom row). The difference between these means constitutes what 1s
called the main effect for self-esteem, or the main effect for factor A.

Similarly, the main effect for factor B (audience condition) is defined by the mean
difference between the columns of the matrix. For the data in Table 14.2, the two groups
of participants tested with no audience had an overall mean score of M = 5 errors.
Participants tested with an audience committed an overall average of M = 7 errors. The
difference between these means constitutes the main effect for the audience conditions,
or the main effect for factor B.

The mean differences among the levels of one factor are referred to as the main
effect of that factor. When the design of the research study is represented as a
matrix with one factor determining the rows and the second factor determining
the columns, then the mean differences among the rows describe the main
effect of one factor, and the mean differences among the columns describe the
main effect for the second factor.



For the example we are considering, factor A involves the comparison of two dif-
ferent levels of self-esteem. The null hypothesis would state that there is no difference
between the two levels; that is, self-esteem has no effect on performance. In symbols,

Hy: g, = Ha,

The alternative hypothesis is that the two different levels of self-esteem do produce
different scores:

Hir o pa, # pa,

To evaluate these hypotheses, we compute an F-ratio that compares the actual
mean differences between the two self-esteem levels versus the amount of difference
that would be expected without any systematic treatment effects.

variance (differences) between the means for factor A

F=

variance (differences) expected if there is no treatment effect

variance (differences) between the row means

F =

variance (differences) expected if there is no treatment effect

Simularly, factor B involves the comparison of the two different audience condi-
tions. The null hypothesis states that there i1s no difference in the mean number of
errors between the two conditions. In symbols,

Hy: Ke, = KB,
As always, the alternative hypothesis states that the means are different:
Hy: g, # g,

Again, the F-ratio compares the obtained mean difference between the two audi-
ence conditions versus the amount of difference that would be expected if there is no
systematic treatment effect.

variance (differences) between the means for factor B

F=

variance (differences) expected if there 1s no treatment effect

P variance (differences) between the column means

variance (differences) expected if there is no treatment effect



INTERACTIONS

DEFINITION

In addition to evaluating the main effect of each factor individually. the two-factor
ANOVA allows you to evaluate other mean differences that may result from unique
combinations of the two factors. For example, specific combinations of self-esteem and
an audience acting together may have effects that are different from the effects of self-
esteem or an audience acting alone. Any “extra” mean differences that are not explained
by the main effects are called an interaction, or an interaction between factors. The real
advantage of combining two factors within the same study is the ability to examine the
unigue effects caused by an interaction.

An interaction between two factors occurs whenever the mean differences
between individual treatment conditions, or cells, are different from what would
be predicted from the overall main effects of the factors.

To make the concept of an interaction more concrete, we reexamine the data shown
in Table 14.2. For these data, there 1s no interaction; that is. there are no extra mean dif-
ferences that are not explained by the main effects. For example, within each audience
condition (each column of the matrix) the average number of errors for the low self-
esteem participants 1s 4 points higher than the average for the high self-esteem partici-
pants. This 4-point mean difference is exactly what is predicted by the overall main
effect for self-esteem.

Now consider a different set of data shown in Table 14.3. These new data show
exactly the same main effects that existed in Table 14.2 (the column means and the row

variance (mean differences) not explained by main effects

variance (differences) expected if there is no treatment effects

The null hypothesis for this F-ratio simply states that there is no interaction:

Hy:

There 15 no interaction between factors A and B. All of the mean

differences between treatment conditions are explained by the main effects
of the two factors.

The alternative hypothesis 1s that there 1s an interaction between the two factors:

H|I

There 1= an interaction between factors. The mean differences between

treatment conditions are not what would be predicted from the overall main
effects of the two factors.

TION When the effect of one factor depends on the different levels of a second factor,
then there 1s an interaction between the factors.
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FIGURE 14.2
(a) Graph showing the treatment means from Table 14.2, for which there is no reaction. (b) Graph for Table 14.3, for which
there is an interaction.
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When the results of a two-factor study are presented in a graph, the existence of

nonparallel lines (lines that cross or converge) indicates an interaction between

the two factors.

GRAPHING RESULTS FROM A TWO-FACTOR DESIGN

One of the best ways to get a quick overview of the
results from a two-factor study 1s to present the data in a
line graph. Because the graph must display the means
obtained for two independent variables (two factors),
constructing the graph can be a bit more complicated
than constructing the single-factor graphs we presented
in Chapter 3 (pp. 93-95).

Figure 14.3 shows a line graph presenting the
results from a two-factor study with 2 levels of factor A
and 3 levels of factor B. With a 2 % 3 design, there are
a total of 6 different treatment means, which are shown
in the following matrix.

In the graph, note that values for the dependent vari-
able (the treatment means) are shown on the vertical axis.
Also note that the levels for one factor (we selected
factor B) are displayed on the horizontal axis. Directly
above the B, value on the horizontal axis, we have placed

Factor B
B1 B2 B3
A, 10 40
Factor A
Az 30 50

two dots corresponding to the two means in the B, column
of the data matrix. Similarly, we have placed two dots
above B; and another two dots above Bs. Finally, we have
drawn a line connecting the three dots corresponding to
level 1 of factor A (the three means in the top row of the
data matrix). We have also drawn a second line that
connects the three dots corresponding to level 2 of
factor A. These lines are labeled A, and A, in the figure.

FIGURE 14.2 -
A line graph showing the
results from a two-factor 2 40
experiment. % a Ay
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(a) Data showing a main effect for factor A but no B effect and no interaction
B4 B
Ay 20 20 Ay mean = 20
1(}-point difference
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=15 =15
-

No difference



(b) Data showing main effects for both factor A and factor B but no interaction

Ay

By B;
10 30 A, mean = 20
10-point difference
20 40 A, mean = 30
B, mean  B; mean
=15 =35
- =
20-point difference

(c) Drata showing no main effect for either factor but an interaction

A
Az
CHECK 1.
2

ANSWERS 1.

B, B
10 20 A, mean = 15
No difference
20 10 A> mean = 15
B, mean B, mean
=15 = 15
-

No difference

Each of the following matrices represents a possible outcome of a two-factor
experiment. For each experiment:

a. Describe the main effect for factor A.
b. Describe the main effect for factor B.
¢. Does there appear to be an interaction between the two factors?

Experiment | Experiment Il

B, B3 B, B;
Ay |M=10 | M=20 Ay |M=10 | M=130
Ay |M=30 | M=40 A |M=20 | M=20

In a graph showing the means from a two-factor experiment, parallel lines indicate
that there 1s no interaction. (True or false?)

A two-factor ANOVA consists of three hypothesis tests. What are they?

It is impossible to have an interaction unless you also have main effects for at least
one of the two factors. (True or false?)

For Experiment I:

a. There is a main effect for factor A; the scores in A> average 20 points higher than in A,.
b. There is a main effect for factor B; the scores in B> average 10 points higher than in B,.

c. There is no interaction; there is a constant 20-point difference between A, and A; that
does not depend on the levels of factor B.

For Experiment II:

a. There is no main effect for factor A; the scores in 4, and in A, both average 20.

b. There is a main effect for factor B; on average, the scores in B, are 10 points higher than
in B,.

¢. There is an interaction. The difference between A, and A, depends on the level of factor
B. (There is a + 10 difference in B, and a — 10 difference in #;.)

2. True.

3. The two-factor ANOVA evaluates the main effect for factor A, the main effect for factor B,
and the interaction between the two factors.

4. False.

Main effects and interactions are completely independent.
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14.

1

We use the data shown in Table 14.5 to demonstrate the two-factor ANOVA. The
data are representative of many studies examining the relationship between arousal
and performance. The general result of these studies is that increasing the level of
arousal (or motivation) tends to improve the level of performance. (You probably
have tried to “psych yourself up” to do well on a task.) For very difficult tasks,
however, increasing arousal beyond a certain point tends to lower the level of
performance. (Your friends have probably advised you to “calm down and stay
focused” when you get overanxious about doing well.) This relationship between
arousal and performance is known as the Yerkes-Dodson law.

The data are displayed in a matrix with the two levels of task difficulty
(factor A) making up the rows and the three levels of arousal (factor B) making up

Factor B
Arousal Level

Low Medium High

3 1 10
1 4 10
1 8 14
[ 6 1
Easy 4 6 9 Taow = 90
M= 3|M=>5 M=10
=15 | T=125 T=50
Factor A S§=18 |55=28 | §8§=126 N= 30
Task Difficulty G=120
0 2 1 X* = 860
0 2 1
Difficult 0 2 6 Towa = 30
3 2 1
M=1 M= 3| M= 2
T=35 T=15 T=10
S§=28 S5§5=20) 55=20

Teorr = 20 Teora = 40 Tegs = 60

the columns. For the easy task, note that performance scores increase consistently
as arousal increases. For the difficult task, on the other hand, performance peaks
at a medium level of arousal and drops when arousal is increased to a high level.
Note that the data matrix has a total of six cells. or treatment conditions, with a
separate sample of n = 5 subjects in each condition. Most of the notation should
be familiar from the single-factor ANOVA presented in Chapter 12. Specifically,
the treatment totals are identified by T values, the total number of scores in the
entire study is N = 30, and the grand total (sum) of all 30 scores 1s G = 120. In
addition to these familiar values, we have included the totals for each row and
for each column in the matrix. The goal of the ANOVA is to determine whether
the mean differences observed in the data are significantly greater than would be
expected if there are no treatment effects.

The first stage of the two-factor ANOVA separates the total vanability into two
components: between-treatments and within-treatments. The formulas for this stage are
identical to the formulas used in the single-factor ANOVA in Chapter 12 with the
provision that each cell in the two-factor matrix is treated as a separate treatment
condition. The formulas and the calculations for the data in Table 14.5 are as follows:

Total variability

§§_ =Ex' - (14.2)



For these data,

1207
5§ = 860—
o 30
= 860 — 480
= 380

This 55 value measures the variability for all ¥ = 30 scores and has degrees of
freedom given by

g =N — 1 (14.3)
For the data in Table 14.5, df,,. = 20.
Within-treatments variability To compute the variance within treatments, we first

compute 88 and df = n — 1 for each of the individual treatment conditions. Then the
within-treatments 55 1s defined as

S8 within treatments = ESSeach treatment (14.4)
And the within-treatments df 1s defined as
dfwimin treatments — Edfsafh treatment '[ 14.5)

For the six treatment conditions in Table 14.4,
SSwithin treatments = 18 + 28 + 26 + 8 + 20 + 20
=120
dfwithin treatments =4 + 4+ 4 + 4+ 4+ 4
=24

Between-treatments variability Because the two components in stage 1 must add up
to the total, the easiest way to find 55,..yeen treatments 15 by subtraction.

SSbetween treatments = SStotal — Swithin (14.6)
For the data in Table 14.4, we obtain
SShetween treatments = 360 — 120 = 260
However, you can also use the computational formula to calculate
SSbetween treatments directly.

™ G

Ssbetwaen treatments E‘I - F

(14.7)

For the data in Table 14.4, there are six treatments (six T values), each with
n = 5 scores, and the between-treatments 58 is

_ 157 25 500 5150 107 120
SSpetwesn woumens~ 5 5 5 5 5 5 30

= 45+125+500+5+45+20—-480
= 260



The between-treatments df value is determined by the number of treatments (or
the number of T values) minus one. For a two-factor study. the number of treatments
is equal to the number of cells in the matrix. Thus,

Afctween treatments — MUMber of cells — 1 (14.8)

For these data, dfpetween weatments = 3.

This completes the first stage of the analysis. Note that the two components,

when added. equal the total for both S8 values and df values.
Ssbe'tv-'een treatments + SSwltth treatments SStIJ‘I:E]

240 + 120 = 360

dfbel'ﬁten treatments + dfwimin treatments dﬂmal

5+24=29

The second stage of the analysis determines the numerators for the three F-ratios.
Specifically, this stage determines the between-treatments variance for factor A, factor
B. and the interaction.

1. Factor A. The main effect for factor A evaluates the mean differences between
the levels of factor A. For this example, factor A defines the rows of the matrix,
s0 we are evaluating the mean differences between rows. To compute the 55
for factor A, we calculate a between-treatment 55 using the row totals in exactly
the same way that we computed S8, con treatment= USINE the treatment totals
(T values) earlier. For factor A, the row totals are 90 and 30, and each total
was obtained by adding 15 scores.

Therefore,
55, =5 teow G (14.9)
HRGH-' N
For our data,
2 2 2
ss, =9D +3[I 120
15 15 30
=540 + 60 — 480
=120
Factor A involves two treatments (or two rows), easy and difficult, so the
df value is
dfy = number of rows — 1 (14.10)
=2-1

=1

I

Factor B. The calculations for factor B follow exactly the same pattern that was
used for factor A, except for substituting columns in place of rows. The main



effect for factor B evaluates the mean differences between the levels of factor B,
which define the columns of the matrix.

X, G
ss, =xco. O (14.11)
' N

For our data, the column totals are 20, 40, and 60, and each total was
obtained by adding 10 scores. Thus,

_ 207 400 607 _IEI[}2

55=70 10 "0 30

= 40+ 160+ 360—480

= 80

dfg = number of columns — 1 (14.12)
=3-1
=2

The A % B Interaction. The A < B interaction is defined as the “extra™ mean
differences not accounted for by the main effects of the two factors. We use this
definition to find the §§ and df values for the interaction by simple subtraction.
Specifically, the between-treatments variability 1s partitioned into three parts: the
A effect, the B effect. and the interaction (see Figure 14.4). We have already
computed the 55 and df values for A and B, so we can find the interaction values
by subtracting to find out how much 1s left. Thus,

SS54xn = SSpetween treatments — 554 — S5p (14.13)
For our data,
SS4xp = 260 — 120 — 80
= 60
Similarly,
dfasn = dfverween treatments — dfa — dfg (14.14)
=5-1-2
=2

The two-factor ANOVA consists of three separate hypothesis tests with three

separate F-ratios. The denominator for each F-ratio is intended to measure the variance
{differences) that would be expected if there are no treatment effects. As we saw in
Chapter 12, the within-treatments variance 1s the appropriate denominator for an
independent-measures design. Remember that inside each treatment all of the
individuals are treated exactly the same, which means that the differences that exist
were not caused by any systematic treatment effects (see Chapter 12, p. 303). The
within-treatments variance 1s called a mean square, or MS, and 15 computed as follows:

MS o stlmin treatments
within treatments —

dfwimin treatments



For the data in Table 14.4,

120
Mswimin treatments — E = 5.00

This value forms the denominator for all three F-ratios.

The numerators of the three F-ratios all measured variance or differences between
treatments: differences between levels of factor A, differences between levels of factor B,
and extra differences that are attributed to the A % B interaction. These three vanances
are computed as follows:

sS S5 S8
MS =24 Ms ="t ps 2="_aa
A de B dfa‘ A=B df‘txs

For the data in Table 14.5, the three M8 values are

8§, 120 55, 80
MS,=—A=""—120 MS,=—2=—=40
o df, 1 todf, 2
MS :S‘Sﬂ_@:m
AxE dfﬂxa 2

Finally, the three F-ratios are

M5, _ 120

Fr=——7——— = 24.00
. Mswimin treatments 5
Fo—— MSs 40 g
Mswlmln treatments 5
MSy.n 30
F = =— =600
AnE MSWimin treatments 5

To determine the significance of each F-ratio, we must consult the F distribution
table using the df values for each of the individual F-ratios. For this example, the F-ratio
for factor A has df = 1 for the numerator and df = 24 for the denominator. Checking the
table with df = 1, 24, we find a critical value of 4.26 for o« = .05 and a critical value of
7.82 for @ = .01. Our obtained F-ratio, F = 24.00 exceeds both of these values, so we
conclude that there is a sigmficant difference between the levels of factor A. That is,
performance on the easy task (top row) is significantly different from performance on
the difficult task (bottom row).

The F-ratio for factor B has df = 2, 24. The critical values obtained from the table
are 3.40 for « = .05 and 5.61 for « = .01. Again, our obtained F-ratio, F = 8.00,
exceeds both values, so we can conclude that there are significant differences among
the levels of factor B. For this study, the three levels of arousal result in significantly
different levels of performance.

Finally, the F-ratio for the A X B interaction has df = 2, 24 (the same as factor B).
With critical values of 3.40 for @ = .05 and 5.61 for « = .01, our obtained F-ratio of
F = 6.00 is sufficient to conclude that there is a significant interaction between task
difficulty and level of arousal.

Source 58 df MS F
Between treatments 260 5
Factor A (difficulty) 120 | 120 Fi(l, 24) = 24.00
Factor B (arousal) 20 2 40 Fi2,24)= 8.00
AxB 60 2 30 Fi2,24) = 6.00
Within treatments 120 24 5
Total 380 29




MEASURING EFFECT SIZE The general technique for measuring effect size with an ANOVA is to compute a
FOR THE TWO-FACTOR  value for 2, the percentage of variance that is explained by the treatment effects. For
ANOVA  a two-factor ANOVA, we compute three separate values for eta squared: one mea-
suring how much of the variance is explained by the main effect for factor A, one for
factor B, and a third for the interaction. As we did with the repeated-measures
ANOVA (p. 446), we remove any variability that can be explained by other sources
before we calculate the percentage for each of the three specific effects. Thus, for
example, before we compute the m? for factor A, we remove the variability that is
explained by factor F and the vanability explained by the interaction. The resulting
equation is,

. 55 ;
for factor A, m™ = A (14.15)
S§§_ —S8§,—S8§, .

Note that the denominator of Equation 14.15 consists of the variability that is
explained by factor A and the other unexplained variability. Thus, an equivalent version
of the equation 1s,

. 55
for factor A, m" = A (14.16)
SS_+8S

within tncatmenis

Similarly, the n” formulas for factor B and for the interaction are as follows:

SSH SSB
for factor B, n° = = (14.17)
880 — 854 — SSaxp  85p + SSyithin weatments
" 55 55
for A X B, m° e AxE (14.18)

 SSiua — S84 — 88p  SSawm + SSwithin treatments
Because each of the ° equations computes a percentage that is not based on the

total variability of the scores, the results are often called partial eta squares. For the data
in Example 14.1, the equations produce the following values:

120 120

2 for factor A (difficulty) = =_=" =050 (50%

- for factor A (diffeulty) = S 060 240 (50%)

) B 80 80

' for factor B (arousal) = o =00 =040 (40%)

v forthe interaction=— 0 =90 _g35 (33%)
380—120—80 180



15. The following table summarizes the results from a 15.
two-factor study with 3 levels of factor A and 3 levels
of factor B using a separate sample of n =9 Source 55 df MS
participants in each treatment condition. Fill in the
missing values. (Hinf: Start with the df values.) Between treatments 144 8
A 36 2 18 F(2,72) = 6.00
B 24 2 12 F(2,72) = 4.00
Source 55 df MS AXB 84 4 21 F(4,72) = 7.00
Within treatments 216 72 3
Between treatments 144 - Total 360 80
Factor A - 18 =
Factor B =
A > B Interaction F=710
Within treatments
Total s
17. The following table summarizes the results from a 17.
two-factor study with 2 levels of factor A and 3 levels
of factor B using a separate sample of n =11 Source 55 daf  Ms
rticipants in each treatment condition. Fill in the
rpfissing values. (Hini: Start with the df values.) Between treatments 116 S
A 28 1 28 £(1,24) = 7.00
B 64 2 32 £(1,24) = 8.00
Source 55 daf  Ms AXB 24 2 12 F(1,24) =3.00
Between treatments __ Within treatments 240 60 4
Factor A F=1 Total 356 63
Factor B F=8
A = B Interaction F=3
Within treatments 40 __ ___
Total -
3. The Tollowing matrx presents the resulls from an 5. 9. M 10
independent-measures, two-factor study with a sample 2. A
of n = 10 participants in each treatment condition. Note b. M = 30
that one treatment mean is missing. ¢. M =50

Factor B
B, B
Ay | M=20 | M=30
Factor A
Az M =40

a. What value for the missing mean would result in no
main effect for factor A7

b. What value for the missing mean would result in no
main effect for factor B7

¢. What value for the missing mean would result in no
interaction?




Univariate Analysis of Variance

Between-Subjects Factors

Value Label N
dlffICU"[y 1 easy 15
2 difficult 15
aurosal 1 low 10
level 2 medium 10
3 .
high 10

Dependent Variable: score

Descriptive Statistics

difficulty  aurosal level Mean Std. Deviation N
easy low 3.00 2.121 5
medium 5.00 2.646 5
high 10.00 2.550 5
Total 6.00 3.798 15
difficult low 1.00 1.414 5
medium 3.00 2.236 5
high 2.00 2.236 5
Total 2.00 2.035 15
Total low 2.00 2.000 10
medium 4.00 2.539 10
high 6.00 4.784 10
Total 4.00 3.620 30

Levene's Test of Equality of Error Variances(a)

Dependent Variable: score

F

dfl

df2

Sig.

.185

5

24

.966

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.
a Design: Intercept+difficulty+aurosallevel+difficulty * aurosallevel

Dependent Variable: score

Tests of Between-Subjects Effects

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 260.000(a) 5 52.000 10.400 .000
Intercept 480.000 1 480.000 96.000 .000
difficulty 120.000 1 120.000 24.000 .000
aurosallevel 80.000 2 40.000 8.000 .002
difficulty * aurosallevel 60.000 2 30.000 6.000 .008
Error 120.000 24 5.000
Total 860.000 30
Corrected Total 380.000 29

a R Squared =.684 (Adjusted R Squared = .618)




Post Hoc Tests
aurosal level

Dependent Variable: score

Multiple Comparisons

Scheffe
Mean
Difference
(I-9) Std. Error Sig. 95% Confidence Interval
(I) aurosal level  (J) aurosal level Lower Bound | Upper Bound | Lower Bound | Upper Bound | Lower Bound
low medium -2.00 1.000 157 -4.61 .61
high -4.00(%) 1.000 .002 -6.61 -1.39
medium low 2.00 1.000 157 -.61 4.61
high -2.00 1.000 157 -4.61 .61
high low 4.00(*) 1.000 .002 1.39 6.61
medium 2.00 1.000 157 -.61 4.61

Based on observed means.
* The mean difference is significant at the .05 level.




