Some Probability Rules

The probability of complement of A

$$P(A') = 1 - P(A)$$

 $P(A \cup B)$

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

If A and B are mutually exclusive events,

$$P(A \cap B) = 0$$
 since $(A \cap B) = \emptyset$
 $P(A \cup B) = P(A) + P(B)$

The conditional probability of A for given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

If A and B are independent events,

Bayes' Rule

If the events $B_1, B_2, ..., B_k$ constitute a partition of the sample space S such that $P(B_i) \neq 0$ for i = 1, 2, ..., k, then for any event A in S such that $P(A) \neq 0$,

$$P(B_r|A) = \frac{P(B_r \cap A)}{P(A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^{k} P(B_i \cap A)}$$

where

$$P(A) = \sum_{i=1}^{k} P(B_i \cap A) = P(B_1 \cap A) + P(B_2 \cap A) + \dots + P(B_k \cap A)$$

= $P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + \dots + P(B_k)P(A|B_k)$

Discrete Probability Distributions

The set of ordered pairs (x, f(x)) is a **probability function**, **probability mass function**, or **probability distribution** of the discrete random variable X if, for each possible outcome x,

- 1. $f(x) \ge 0$
- $2. \quad \sum_{x} f(x) = 1$
- 3. P(X = a) = f(a)

The **cumulative distribution function** F(x) of a discrete random variable X with probability distribution f(x) is

$$F(a) = P(X \le a) = \sum_{t \le a} f(t)$$
 for $-\infty < a < \infty$

Mathematical Expectation

Let X be a discrete random variable with probability distribution f(x). The expected value of the g(X) is

$$\mu_{g(x)} = E[g(x)] = \sum_{x} g(x)f(x)$$

Let X be a discrete random variable with probability distribution f(x). The expected value of the X is

$$\mu = E[X] = \sum_{x} x f(x)$$

Let X be a discrete random variable with probability distribution f(x) and mean μ . The variance of X is $\sigma^2 = E[X^2] - \mu^2$

Binomial Distribution

Probability of x successes in n trials with P(Success)=p

$$X \sim b(x; n, p),$$
 $P(X = x) = b(x; n, p) = \binom{n}{x} p^x q^{n-x} \text{ for } x = 0, 1, ..., n$

The mean and standard deviation of the binomial distribution b(x; n, p) are $\mu = np$ and $\sigma = \sqrt{npq}$

Approximation of Binomial Distribution by a Poisson Distribution

if n is large and p is close to 0, the Poisson dist. can be used, with $\mu = np$, to approximate binomial dist.

Hypergeometric Distribution

Probability of x successes in a random sample of size n selected from N items of which k are labeled success and N-k labeled failure, is

$$X \sim h(x; N, n, k),$$
 $P(X = x) = h(x; N, n, k) = \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{n}} \text{ for } \max\{0, n - (N-k)\} \le x \le \min\{n, k\}$

Approximation of Hypergeometric Distribution by a Binomial Distribution

if n is small compared to N, the nature of the N items changes very little in each draw. So a binomial distribution can be used to approximate the hypergeometric distribution when n is small compared to N. In fact, as a rule of thumb, the approximation is good when $n/N \le 0.05$.

Negative Binomial Distribution

Probability of the k^{th} success occurs at x^{th} trial is

$$X \sim b^*(x; k, p),$$
 $P(X = x) = b^*(x; k, p) = {x - 1 \choose k - 1} p^k q^{x - k}$ for $x = k, k + 1, k + 2, ...$

Geometric Distribution

Probability of the first success occurs at x^{th} trial is

$$X \sim g(x, p),$$
 $P(X = x) = g(x, p) = pq^{x-1} \text{ for } x = 1, 2, ...$

The mean and standard deviation of the geometric distribution g(x,p) are $\mu=\frac{1}{p}$ and $\sigma=\frac{\sqrt{1-p}}{p}$

Poisson Distribution

The probability distribution of the Poisson random variable *X*, representing the number of outcomes occurring in a given time interval or specified region

$$X \sim p(x; \lambda),$$
 $P(X = x) = p(x; \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$ for $x = 0, 1, 2, ...$

where λ is the average number of outcomes per unit time, distance, area, or volume.

Both the mean and the variance of the Poisson distribution $p(x; \lambda)$ are λ .

Continuous Probability Distributions

The function f(x) is a **probability density function** (pdf) for the continuous random variable X, defined over the set of real numbers, if

- 4. $f(x) \ge 0$ 5. $\int_{-\infty}^{\infty} f(x) dx = 1$
- 6. $P(a < X < b) = \int_{a}^{b} f(x) dx$

The **cumulative distribution function** F(x) of a continuous rv X with probability density function f(x) is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$
 for $-\infty < x < \infty$

Mathematical Expectation

Let X be a continuous random variable with probability distribution f(x).

The expected value of the g(X) is $\mu_{g(x)} = E[g(x)] = \int g(x)f(x)dx$

The expected value of the *X* is $\mu = E[X] = \int_{-\infty}^{\infty} x f(x) dx$

The variance of *X* is $\sigma^2 = E[X^2] - \mu^2$

The Joint Density Function

- The function f(x, y) is a joint density function of the continuous random variables X and Y if
- 1. $f(x,y) \ge 0$ for all (x,y)2. $\iint_{-\infty}^{\infty} f(x,y) dA = 1$
- 3. $P[(X,Y) \in R] = \iint_{\mathbf{R}} f(x,y)dA$ for any region R in the xy-plane.
- The marginal distributions of X alone and of Y alone are

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 and $h(y) = \int_{-\infty}^{\infty} f(x, y) dx$ for the continuous case.

Let X and Y be two random variables, discrete or continuous. The **conditional distribution** of the random variable Y given that X = x is

$$f(x|y) = \frac{f(x,y)}{h(y)}, \qquad g(x) > 0$$

Similarly, the conditional distribution of X given that Y = y is

$$f(y|x) = \frac{f(x,y)}{g(x)}, \quad h(y) > 0$$

The random variables X and Y are said to be **statistically independent** if and only if f(x, y) = g(x)h(y) for all (x, y) within their range.

Mathematical Expectation

Let X and Y be random variables with joint probability distribution f(x, y).

• The mean, or expected value, of the random variable g(X, Y) is

$$\mu_{g(x,y)} = E[g(x,y)] = \int_{-\infty}^{\infty} g(x,y)f(x,y)dA$$

The covariance of X and Y is

$$\sigma_{xy} = E[XY] - \mu_x \mu_y$$

where
$$\mu_X = E[X] = \int_{-\infty}^{\infty} x g(x) dx$$
 and $\mu_Y = E[Y] = \int_{-\infty}^{\infty} y h(y) dy$

• The correlation coefficient of X and Y is $ho_{xy}=rac{\sigma_{xy}}{\sigma_x\sigma_y}$

Uniform Distribution

The density function of the continuous uniform random variable X on the interval [A, B] is

$$f(x; A, B) = \begin{cases} \frac{1}{B - A}, & A \le x \le B \\ 0, & elsewhere \end{cases}$$

• The mean and variance of the uniform distribution are

$$\mu = \frac{A+B}{2}$$
, and $\sigma^2 = \frac{(B-A)^2}{12}$

Standard Normal distribution

we are able to transform all the observations of any normal random variable X into a new set of observations of a normal random variable Z with mean 0 and variance 1. This can be done by means of the transformation

$$Z = \frac{X - \mu}{\sigma}$$

So, $P(x_1 < X < x_2) = P(z_1 < Z < z_2)$

Normal Approximation to Binomial Distribution

If X is a binomial random variable with mean $\mu=np$ and variance $\sigma=\sqrt{npq}$, then the limiting form of the distribution of

$$Z = \frac{Y - np}{\sqrt{npq}}$$

as $n \to \infty$, is the standard normal distribution n(z; 0, 1), where Y is the upper or lower real limit of X. The approximation will be good if np and n(1-p) are greater than or equal to 5.

Exponential Distribution

The continuous random variable X has an **exponential distribution**, with parameter β , if its density function is given by

$$f(x;\beta) = \begin{cases} \frac{1}{\beta} e^{\frac{-x}{\beta}}, & x > 0\\ 0, & elsewhere \end{cases}$$

where $\beta > 0$ and β denotes the average time.

The mean and standard deviation of the exponential distribution are $\mu = \beta$ and $\sigma = \beta$.

The Moment Generating Function

$$\begin{split} &M_t(x) = E[e^{xt}] = \sum_x e^{xt} f(x) \ for \ discrete \ random \ variables \\ &M_t(x) = E[e^{xt}] = \int\limits_{-\infty}^{\infty} g(x) f(x) dx \ for \ continuous \ random \ variables \\ &n^{th} \ moment \ \mu_n = E[X^n] = \frac{d^n M_t(x)}{dt^n} \big|_{t=0} \end{split}$$

The Joint Probability Distribution Function

- The function f(x, y) is a joint Probability Distribution Function of the Discrete random variables X and Y
 - 1. $f(x,y) \ge 0$ for all (x,y)
 - $2. \ \sum_{x} \sum_{y} f(x, y) = 1$
 - 3. $P[(X,Y) \in R] = \sum_{x} \sum_{y} f(x,y)$ for any region R in the xy-plane.
- The marginal distributions of X alone and of Y alone are

$$g(x) = \sum_{y} f(x, y)$$
 and $h(y) = \sum_{x} f(x, y)$ for the discrete case.

 Let X and Y be two random variables, discrete or continuous. The conditional distribution of the random variable Y given that X = x is

$$f(x|y) = \frac{f(x,y)}{h(y)}, \qquad g(x) > 0$$

• Similarly, the conditional distribution of X given that Y = y is

$$f(y|x) = \frac{f(x,y)}{g(x)}, \quad h(y) > 0$$

• The random variables X and Y are said to be **statistically independent** if and only if f(x, y) = g(x)h(y) for all (x, y) within their range.

The Hypotheses Testing

- i. State the null and alternative hypotheses.
- ii. Set the critical region
- iii. Compute the test statistics
- iv. Draw scientific or engineering conclusions.

H_0	Value of Test Statistic	H_1	Critical Region
$\mu = \mu_0$	$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}; \sigma \text{ known}$	$\mu < \mu_0 \mu > \mu_0 \mu \neq \mu_0$	$\begin{array}{l} z < -z_{\alpha} \\ z > z_{\alpha} \\ z < -z_{\alpha/2} \text{ or } z > z_{\alpha/2} \end{array}$
$\mu = \mu_0$	$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}; v = n - 1,$ $\sigma \text{ unknown}$	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$\begin{array}{l} t<-t_{\alpha}\\ t>t_{\alpha}\\ t<-t_{\alpha/2} \text{ or } t>t_{\alpha/2} \end{array}$
$\mu_1 - \mu_2 = d_0$	$z = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}};$ \(\sigma_1\) and \(\sigma_2\) known	$\mu_1 - \mu_2 < d_0 \mu_1 - \mu_2 > d_0 \mu_1 - \mu_2 \neq d_0$	$z>z_{\alpha}$
$\mu_1 - \mu_2 = d_0$	$t = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{s_p \sqrt{1/n_1 + 1/n_2}};$ $v = n_1 + n_2 - 2,$ $\sigma_1 = \sigma_2 \text{ but unknown,}$ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	$\mu_1 - \mu_2 < d_0$ $\mu_1 - \mu_2 > d_0$ $\mu_1 - \mu_2 \neq d_0$	

where s_p^2 is pooled variance.