VARIABILITY

CHAPTER 4

OVERVIEW

- VARIABILITY provides a quantitative measure of the degree to which scores in a distribution are spread out or clustered together.
- A good measure of variability serves two purposes:
 - It tells how much distance to expect between one score and another or how much distance to expect between an individual score and the mean.
 - It measures how well an individual score represents the entire distribution. Moreover, it provides information about how much error to expect if you are using a sample to represent a population.
- There are three different measures of variability: range, the interquartile range and standard deviation

THE RANGE

- The range refers to the distance between the largest score (Xmax) and the smallest score in the distribution (Xmin).
- **IMPORTANT!!!** You should take into account the real limits of the maximum and minimum X values
- It is typically used with interval and ratio scale measurements of a continuous variable.
- However, the range can be used with discrete variables that are measured on interval and ratio scale

THE RANGE

• The range is considered to be an **unreliable** measure of variability. Because it is **completely determined by the two extreme values** and **ignores the other scores** in the distribution.

THE INTERQUARTILE RANGE

- It measures the range covered by the middle 50% of the distribution.
- To find the interquartile range
- 1) Locate the boundary that seperates the lowest 25% from the rest of the distribution. It is called first quartile and identified with Q1
- 2) Locate the boundary that seperates the top 25% from the rest of the distribution. It is called third quartile and identified with Q3
- 3) Interquartile range is then defined as the distance between Q1 and Q3

THE INTERQUARTILE RANGE

- When the interquartile range is used to measure variability, it is commonly transformed into the semi-interquartile range
- Semi-interquartile range measures the distance from the middle of the distribution to the boundaries that define the middle 50%
- Semi-interquartile range= Q3-Q1/2

THE INTERQUARTILE RANGE

- The semi-interquartile range gives a better and stable variability because it is derived from the middle 50% of the distribution and it is less likely to be influenced by extreme scores.
- However, it does not provide a complete picture of the variability because it only considers the middle 50% but ignores the other 50%

• Standard deviation is the most common and important measure of variability.

• It uses the mean of a distribution as a reference point and measures variability by considering the distance between each score and mean

- In order to calculate the standard deviation
- STEP 1: We determine the deviation which refers to the distance from the mean for each individual score
 - There are two parts to a deviation score:
 - The sign (+ or -) that tells the direction from the mean
 - The number that gives the actual distance from the mean
- Deviation=X μ

- STEP 2: To calculate the mean of deviation scores
- NOTE that the sum of the deviation scores is always zero. So the mean of deviation scores is always zero. Therefore mean of deviation scores is no value as a measure of variability.

- STEP 3: In order to solve the problem in step 2, we square the each deviation score. Using the squared values, we compute the mean squared deviation which is called variance
- However, the concept of squared distance (variance) is not easy to understand. Therefore, we make a correction.
- STEP 4: We take the square root of the variance which is called standard deviation.

 Standard deviation and variance are used only with numerical scores that are obtained from interval or ratio scales.

STANDARD DEVIATION AND VARIANCE FOR A SAMPLE

- Samples consistently tend to be less variable than their populations.
- A few extreme scores in the population tend to make population variability relatively large.
- However, these extreme values are unlikely to be obtained when we are selecting a sample.
- Therefore, sample variability is relatively small.
- Sample variability gives a biased estimate of population variability. It underestimates the population parameter.
- In order to obtain an accurate and unbiased sample variance, we make a correction in the calculation of sample variance.

TRANSFORMATION OF SCALE

- Adding a constant to every score does not affect any distances in the distribution and therefore does not change the standard deviation
- Multiplying each score by a constant causes the standard deviation to be multiplied by the same constant.

VARIANCE AND INFERENTIAL STATISTICS

- Variability plays an important role in inferential statistics, the variability in the data influences how easy it is to see patterns.
 - Low variability means the existing patterns can be seen easily
 - High variability tends to obscure any patterns that might exist.
- Error Variance refers to the variance that exists in a set of sample. Error variance occurs because there is unexplained and uncontrolled differences between scores.
- When the error variance increases, it is difficult to see any systematic differences between sample mean difference

COMPARING MEASURES OF VARIABILITY

- Extreme Scores:
 - Range is most affected.
 - Standard Deviation and variance are also influenced by extreme scores
 - Semi-interquartile range is less affected
- Sample size
 - When the sample size increases, the range is unaffected
 - Standard Deviation, variance and semi-interquartile range are relatively affected.
- Open-Ended Distributions
 - You can't compute the range, SD and Variance
 - Only measure is semi-interquartile range